
Full-Stack, Real-System Quantum Computer Studies:
Architectural Comparisons and Design Insights

Prakash Murali*

Princeton University

Norbert Matthias Linke
University of Maryland

Margaret Martonosi
Princeton University

Ali Javadi Abhari
IBM T. J. Watson Research Center

Nhung Hong Nguyen
University of Maryland

Cinthia Huerta Alderete
University of Maryland

ABSTRACT

In recent years, Quantum Computing (QC) has progressed to the

point where small working prototypes are available for use. Termed

Noisy Intermediate-Scale Quantum (NISQ) computers, these proto-

types are too small for large benchmarks or even for Quantum Error

Correction (QEC), but they do have sufficient resources to run small

benchmarks, particularly if compiled with optimizations to make

use of scarce qubits and limited operation counts and coherence

times. QC has not yet, however, settled on a particular preferred

device implementation technology, and indeed different NISQ proto-

types implement qubits with very different physical approaches and

therefore widely-varying device and machine characteristics.

Our work performs a full-stack, benchmark-driven hardware-

software analysis of QC systems. We evaluate QC architectural

possibilities, software-visible gates, and software optimizations to

tackle fundamental design questions about gate set choices, commu-

nication topology, the factors affecting benchmark performance and

compiler optimizations. In order to answer key cross-technology and

cross-platform design questions, our work has built the first top-to-

bottom toolflow to target different qubit device technologies, includ-

ing superconducting and trapped ion qubits which are the current

QC front-runners. We use our toolflow, TriQ, to conduct real-system

measurements on seven running QC prototypes from three differ-

ent groups, IBM, Rigetti, and University of Maryland. Overall, we

demonstrate that leveraging microarchitecture details in the compiler

improves program success rate up to 28x on IBM (geomean 3x), 2.3x

on Rigetti (geomean 1.45x), and 1.47x on UMDTI (geomean 1.17x),

compared to vendor toolflows. In addition, from these real-system

experiences at QC’s hardware-software interface, we make observa-

tions and recommendations about native and software-visible gates

for different QC technologies, as well as communication topolo-

gies, and the value of noise-aware compilation even on lower-noise

platforms. This is the largest cross-platform real-system QC study

performed thus far; its results have the potential to inform both QC

device and compiler design going forward.

*Prakash Murali is the corresponding author and can be reached at
pmurali@cs.princeton.edu.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ISCA ’19, June 22–26, 2019, Phoenix, AZ, USA

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6669-4/19/06. . . $15.00
https://doi.org/10.1145/3307650.3322273

CCS CONCEPTS

• Computer systems organization → Quantum computing; • Soft-

ware and its engineering → Compilers.

ACM Reference Format:

Prakash Murali, Norbert Matthias Linke, Margaret Martonosi, Ali Javadi

Abhari, Nhung Hong Nguyen, and Cinthia Huerta Alderete. 2019. Full-Stack,

Real-System Quantum Computer Studies: Architectural Comparisons and

Design Insights. In ISCA ’19: 46th International Symposium on Computer

Architecture, June 22–26, 2019, Phoenix, AZ, USA. ACM, New York, NY,

USA, 14 pages. https://doi.org/10.1145/3307650.3322273

1 INTRODUCTION

Quantum computing (QC) is emerging as a promising paradigm for

solving classically intractable computational problems in areas such

as machine learning [4, 39], cryptography [60], chemistry [32, 50]

and others. QC devices represent information using qubits (quantum

bits) and perform operations based on quantum mechanical princi-

ples such as superposition and entanglement to achieve speedups

over classical algorithms.

In recent years, QC implementations have advanced considerably.

QC prototypes with up to 16 qubits are available for broad public

use [27] and larger 49-72 qubit systems are either announced or

in use [17, 25, 30]. Much like the early days of classical (i.e. non-

quantum) computing, however, QCs have not yet converged on

a specific candidate device technology. Front-runner technologies

today include superconducting transmon qubits [40, 57] and trapped

ion qubits [8, 12, 23], with other candidate technologies also of

considerable interest [33, 34, 51].

As shown in Figure 1, the current candidate QC device technolo-

gies differ widely in key physical attributes. First and foremost, the

different methods of forming qubits are sufficiently distinct that even

the fundamental gate operations performed on them differ widely.

(In contrast, consider that classical computers built from vacuum

tubes, relay circuits, or transistors all hinge on a switch abstraction

that maps similarly to Boolean logic gates.) In addition to gate dif-

ferences, there are also differences in how inter-qubit interactions

are accomplished, and these lead to widely disparate communica-

tion approaches and connectivity topologies. Finally, because of the

differences in physical implementation, there are also considerable

variations in the noise and error characteristics. While all current

QCs are susceptible to operation, communication, and measurement

errors, the nature, magnitude, and spatiotemporal variance of these

errors differs greatly from technology to technology.

This paper is the first to perform a cross-technology hardware

software assessment of QC design. We assess how differences in

1

527

for current NISQ systems to easily overcome. Exposing device-

specific gates also allows for additional compile-time optimizations

of single-qubit operations. Second, we find that even though trapped

ion technologies have intrinsically lower error rates than many su-

perconducting systems, there is still value in performing error-aware

compilation for such systems.

Fourth, our compilation approach melding device specificity with

a common core toolflow offers very good results; we achieve porta-

bility without a tradeoff cost in performance or reliability. In par-

ticular, TriQ outperforms vendor compilers. On IBM devices with

5-16 qubits, TriQ provides geomean 3x (up to 28x) improvement in

program success rate over the IBM Qiskit compiler [26]. On Rigetti

devices with 4-16 qubits, TriQ provides geomean 1.45x (up to 2.3x)

over the Rigetti Quil compiler [62]. TriQ obtains improvements over

IBM and Rigetti compilers because of noise-adaptivity, optimizing

qubit communication and optimizing single qubit operations. On the

UMD ion trap computer (UMDTI), TriQ uses noise-adaptiveness

to improve program success rates by up to 1.47x, compared to a

noise-unaware baseline. In particular, our paper is the first to demon-

strate noise-adaptive compilation across 3 vendors and for trapped

ion qubit technology. Finally, although compile time is not a pri-

mary design goal, TriQ scales well up to 72 qubits, the largest NISQ

configuration announced thus far [17].

2 QC BACKGROUND

2.1 Principles of Quantum Computing

A qubit is the fundamental unit of information in a QC system.

Qubits have two basis states |0⟩ and |1⟩, which are the analogues of

the classical 0 and 1 states. However, quantum superposition allows

a qubit to be in a complex linear combination, where its state is

α |0⟩+β |1⟩, for α,β ∈ C. An n-bit QC system can potentially exist

in a superposition state of 2n basis states simultaneously, unlike

classical registers which can be in exactly one of the 2n values at any

given time. Qubits can be manipulated by modifying the complex

numbers associated with the basis states, using operations which

are commonly called gates. To obtain classical output, a qubit is

measured, collapsing its state to either |0⟩ or |1⟩.
In a QC application, an algorithm is mapped to gates which

execute on a set of qubits which are initialized appropriately. As

the program executes, qubit amplitudes are manipulated and the

state space is evolved towards the desired output. Finally, the qubits

are measured or readout (RO) to generate classical output for the

application.

2.2 Quantum Gates

Quantum gates are instructions which operate on one or more qubits.

The functionality of a gate is achieved by applying some dynamic

physical interaction (such as a microwave or laser pulse) to the qubit.

Complex quantum operations can be composed as a sequence of

operations from a small set of universal gates. Universal QC systems,

such as the ones we experiment on here, provide a universal set of

single-qubit (1Q) and two-qubit (2Q) operations.

The state of a single qubit can be represented by a complex vec-

tor on a unit sphere. All single-qubit operations can be viewed as

rotation operations Rx(θ), Ry(φ) and Rz(λ) along the X, Y or Z axes

on this complex sphere. Rather than fully-general rotations, QC al-

gorithms often use a set of composite 1Q operations, such as X/NOT

gate (Rx(π)), Hadamard gate (Ry(π/2)Rz(π)) which generates super-

position, Z gate (Rz(π)) and others [44].

2Q operations generate entanglement among qubits, resulting in

non-classical correlated behaviour. Correlation from entanglement

potentially allows a QC’s state space to grow exponentially with

qubit count. This is central to QC’s power and is used by QC algo-

rithms. A common example of a 2Q gate is Controlled NOT (CNOT)

which acts on a control and target qubit pair. When the control qubit

is in the state |1⟩, the action of the gate is to flip the state of the

target qubit1. Another example of a 2-qubit gate is a Controlled Z

gate where the target qubit is rotated by π radians along the Z axis if

the control qubit is |1⟩.

2.3 NISQ Systems

Noisy Intermediate-Scale Quantum (NISQ) are near-term systems

with less than 500-1000 qubits [52]. This scale is typically too small

to implement quantum error correction, but if used efficiently these

machines may have promising applications in various domains [52]

and can pave the way towards practical QC.

NISQ systems are built using a variety of qubit technologies, in-

cluding superconducting qubits [57], trapped ions [8], spin qubits

[24], among others. To reliably process information, these qubits

should be “coherent” for sufficiently long, i.e., they should maintain

the quantum state for a length of time. The qubits should also support

sufficiently precise operations to allow the state to be manipulated

correctly during the coherence window. To obtain useful output,

qubits should also support accurate readout or measurement opera-

tions [13]. Because of the error rates in current NISQ systems, some

fraction of the runs result in the wrong answer being calculated. As

a result, it is common to run a QC program many times with a figure

of merit being the success rate, the fraction of runs that resulted in a

correct answer.

3 DEVICE, ARCHITECTURE TRADEOFFS

3.1 Native Gate Choices

Figure 2 shows the qubit technologies and gates (or operations) used

in the systems at IBM [29], Rigetti [6] and UMD [12]. IBM and

Rigetti use superconducting qubits based on Josephson junctions,

while UMD uses ions trapped in an electromagnetic field.

In some ways, these different qubit implementation options are

analogous to how classical computers might be implemented using

vacuum tubes or CMOS transistors. On the other hand, while many

classical devices can all be abstracted as on-off switches, qubit

technologies are still more distinct. Each QC vendor implements a set

of native operations that are feasible on their platform. Like classical

NAND and NOR gates, all QC operations must be composable from

a universal set of native gates. Typically, the vendor provides at least

one 1Q and one 2Q operation. Figure 2 shows that differences in

underlying device technologies lend themselves to quite different

native operations.

In IBM Q systems, the fundamental 2Q interaction is a cross

resonance gate where one qubit is driven at the resonant frequency

1A CNOT gate with control C and target T is denoted as CNOT C, T.

3

529

Table 1: Compilers and optimization levels considered.

Compiler Description

TriQ-N TriQ. No optimization. Default qubit mapping

TriQ-1QOpt TriQ, 1Q gate optimization. Default qubit mapping

TriQ-1QOptC TriQ. 1Q opt. Communication-optimized mapping,

TriQ-1QOptCN TriQ. 1Q opt. Comm- and Noise-optimized mapping.

Qiskit IBM Qiskit compiler version 0.6.0 [26]

Quil Rigetti Quil compiler version 1.9 [55]

IR). The abstractive power of such approaches shields the higher-

level optimizations from many hardware-specific details and vice

versa. In contrast, our work here requires that many more hardware

and software implementation attributes are available to all or nearly

all of the full-stack of the compiler.

4.1 Overview

As shown in Figure 4, the TriQ toolflow contains core functional-

ity to perform noise-aware qubit mapping, 1Q optimizations, and

communication optimizations. For all this functionality, the device-

specific attributes are provided to the core functionality as compiler

inputs. This includes the machine’s qubit count and connectivity, its

native gate set, and a summary of its noise characteristics. In essence,

it operates like a multi-target compiler in which characteristics such

as the ISA and operation latencies are provided as compile-time

inputs. In this way, our compiler can target very different devices

simply by changing input characteristics. Section 6 shows that this

flexibility comes with no performance trade-off; TriQ outperforms

the native vendor compilers in both performance and success rate.

Our toolflow accepts program inputs written in Scaffold, a C-like

language that represents QC programs in a device- and vendor-

independent manner. The ScaffCC compiler [31, 58] parses from

Scaffold into an LLVM IR [36] consisting of 1Q and 2Q gates.

Figure 5 shows the IR for the Bernstein-Vazirani algorithm [3], a

common NISQ benchmark program. ScaffCC automatically decom-

poses higher-level QC operations such as Toffoli gates into native

1Q and 2Q representations. Since QC programs are usually compiled

for a fixed input, ScaffCC also takes the application input data and

resolves all classical control dependencies. The output IR graph in-

cludes the qubits required for each operation and data dependencies

between operations.

From both the application inputs (program and input data) and the

inputs about the device characteristics (resource counts, noise statis-

tics, etc.) the core compiler passes analyze and optimize mappings

before generating device-specific executable code to be run on one of

seven real systems. The sequence of compiler analyses is discussed

below. In our experiments, we vary which optimizations are applied.

Table 1 names and summarizes the optimization approaches.

4.2 Reliability Matrix Computation

The qubit mapping and communication orchestration phases must

determine good spatial placements for qubits and good routing paths

for 2Q gates. As Figure 1 shows, 2Q and RO operations dominate

error rates and are important to optimize for [46]. The gate errors on

both superconducting and trapped ion prevent long gate sequences

and are more limiting than coherence times. For these reasons, a

central aspect of qubit mapping and gate orchestration decisions is

optimizing for the reliability of 2Q and RO operations. The chal-

lenge is doing so in a way that ports well across very different

implementations.

To inform qubit mapping and communication orchestation, TriQ

uses the provided qubit topology and noise data to construct a ma-

trix which summarizes the “end-to-end” reliability of 2Q operations

between any pair of qubits, including any communication routing

required to co-locate the qubits. Figure 6 shows an example. The

i, jth entry in this matrix estimates the reliability of performing a 2Q

operation from qubit i to qubit j, including the cost of communi-

cation. By distilling the important factors of a machine’s topology

and 2Q errors into single matrix representation, this approach is

applicable both to fully-connected machines like UMDTI as well as

to machines with more limited topologies.

To fill in the reliability matrix, TriQ considers the topology of the

machine, where nodes are hardware qubits and edges are hardware-

supported, direct 2Q gates between them. Each edge is labelled

with the reliability of the corresponding 2Q gate. To estimate the

reliability score for non-local operations, TriQ performs an all-pairs

swap cost computation using the Floyd-Warshall algorithm [9]. For

each pair of qubits c and t, it determines the most reliable neighbor

t ′ of t. t ′ is the neighbor which maximizes the product of reliability

of the swap path from c to t ′ and the 2Q gate from t ′ to t (for

IBM machines, we also include the error rates of any extra 1Q

gates necessary for orienting the gates in the hardware-supported

directions). In Figure 6, the best neighbor for a 2Q gate from 1 to 3

is 4.

For noise-unaware compilation such as TriQ-1QOptC, the 2Q

gate reliability for all edges is set as the average error rate in the

system. Then the reliability matrix computation in effect determines

shortest paths which minimizes hop count. The noise-aware TriQ-

1QOptCN approach uses the input noise/error data to set the gate

reliability. Here, the shortest path computation choose the most reli-

able path, minimizing prevalence (severity and count) of erroneous

operations.For example, if the two program qubits p0 and p3 from

Figure 5 are mapped to qubits 1 and 3 in Figure 6, the reliability of

a 2Q operation between them is 0.58. We also record the readout

reliabilities for the hardware qubits in a vector, where the ith entry

denotes the accuracy of measuring the state of qubit i. This matrix

becomes an input for the subsequent passes that follow.

4.3 Qubit Mapping

To map program qubits to hardware qubits, TriQ uses a constrained

optimization method similar to [46]. The optimization creates vari-

ables for each program qubit denoting which hardware qubit it may

be mapped to. The reliability matrices for 2Q and readout opera-

tions previously discussed ascribe possible operation costs for each

program operation. The optimization goal is to maximize success

rate, so our objective function is a function of the reliability for the

program dependence graph as mapped.

Maximizing this objective implies that communicating qubits

should be mapped close together, and hardware gates and readout

units which have poor reliability scores should be avoided. The

optimization problem can be solved by expressing the variables,

constraints and objective in a Satisfiability Modulo Theory solver

5

531

6 RESULTS

The TriQ toolflow allows us to study opportunities for multi-platform

optimizations, as well as architectural implications related to differ-

ent device and implementation choices. This section offers empirical

real-system results on initial key questions.

6.1 Gate Specificity and Optimizations

Figure 8 shows the number of native 1Q operations using TriQ-N

and TriQ-1QOpt. Because so-called “virtual Z gates" can be applied

on all three vendors using runtime classical transformations, those

rotations are error-free on all 3 vendors; we plot X and Y here. TriQ-

N produces output code in terms of the software-visible gates, it

does not perform any optimization. The native gate set plays a key

role in the number of 1Q operations required by the unoptimized

code. Namely, where swaps end up getting translated to sequences

including native 1Q operations, then some benchmarks such as BV8

that require long swap paths on IBM will have a large number of

supporting 1Q gates.

Figure 9 shows how 1Q optimizations result in improved suc-

cess rates for IBMQ14 and UMDTI3. Even though 1Q operations

are lower-error than 2Q operations, reducing the number of 1Q

operations reduces faulty operations and increases success rate sub-

stantially.

1Q optimizations are clearly important, and the leverage gained

from them depends partly on the native gate set provided by the

vendor. Across the 3 machines, TriQ-1QOpt compared to TriQ-N

offers geomean 1.4x improvement in operation count on IBMQ14,

1.4x on Rigetti and 1.6x on UMDTI. These improvements come

from mapping more effectively onto the underlying native 1Q gates,

as well as by exploiting the error-free Z-axis rotations. These 1Q

optimizations pay off in success rate improvements: up to 1.26x

improvement in success rate (geomean 1.09x on IBM, 1.03x on

UMDTI) compared to TriQ-N.

The higher gains that UMDTI sees are directly related to the gate

set provided. Namely, the underlying hardware supports a arbitrary

Rx,yθ ,φ 1Q rotation gate, which it makes software-visible. Using

this operation the compiler can simplify a long sequence of 1Q gates

into a single rotation operation. This demonstrates the power of ap-

propriate software-visible gates that can be implemented efficiently

and at low error rates on the underlying hardware.

6.2 Importance of Qubit Connectivity

Figure 10a and 10b show the 2Q gate counts for IBMQ14 and

Rigetti Agave, for TriQ-1QOpt and the communication-optimized

TriQ-1QOptC. Where 1Q optimizations are local, 2Q optimizations

are dominated by improvements in mapping the program onto com-

munication paths that are either shorter or higher-reliability or both.

TriQ-1QOptC is noise-unaware, but optimizes communication by

tailoring the executable to the device topology. It reduces the number

of 2Q operations by up to 22x in IBMQ14 (geomean 2.1x) and up

to 3.5x reduction in Rigetti Agave (geomean 1.3x). (Since UMDTI

is fully-connected, these topology optimizations are not applicable

here.)

Comparing corresponding applications from Figure 10a and 10b,

Rigetti Agave (line topology) requires more 2Q operations than

3The Rigetti machines were not available at the time these were gathered.

IBMQ14 (grid topology) because the topology is more restricted.

Toolflow functionality, i.e. TriQ-1QOptC, can overcome this to some

degree by finding good placements, but not entirely.

Figure 10c shows how communication optimizations can be

parlayed into higher success rate, particularly for IBMQ14. TriQ-

1QOptC enables programs such as BV6, BV8 and Toffoli to succeed

while they fail with TriQ-1QOpt. The figure also shows the impor-

tance of program-machine topology match. Programs with topology

well-matched to the device topology have more chances of succeed-

ing because they can be executed without swaps, reducing their

2Q gate count. For IBMQ14 (grid topology, see Figure 1), such

programs include BV4 (4-qubit star) and HS2,4,6 (disjoint 2-qubit

edges). On UMDTI, the fully connected topology (see Figure 1) ac-

commodates all program 2Q patterns. Figure 9b shows that programs

with varied topology have similar success rates on UMDTI.

6.3 Importance of Noise-Adaptivity

Noise-unaware communication optimization is useful, but not al-

ways sufficient. For example, Figure 10c shows that for QFT, TriQ-

1QOptC performs worse than TriQ-1QOpt. Why is that? The ma-

chine’s calibration data indicates that in doing noise-unaware map-

ping solely for communication distance, this compilation inadver-

tently resulted in qubit mappings that use less reliable hardware.

This motivates the TriQ-1QOptCN approach.

Figure 11 shows the success rate and 2Q gate count for TriQ-

1QOptC, TriQ-1QOptCN, and Qiskit. The large reductions in 2Q

gate counts because of communication optimization give our meth-

ods significant benefits. Qiskit uses lexicographic mapping of qubits

and performs swap optimization uses a greedy stochastic algorithm.

It underperforms our methods because it always uses the first few

qubits in the device regardless of noise and program communica-

tion requirements. 2Q optimizations again parlay into success rate

benefits. TriQ-1QOptCN succeeds on all 12 benchmarks, and outper-

forms TriQ-1QOptC by up to 2.8x (geomean 1.4x). In Toffoli, it un-

der performs slightly, but the loss is comparable to the noise-margin

in these runs and not significant. TriQ-1QOptC fails to produce the

correct answer in the Fredkin benchmark, while TriQ-1QOptCN

succeeds. In contrast, the IBM Qiskit compiler (noise-unaware) fails

to produce the correct answer on 7/12 benchmarks. To compute im-

provement factors, we used the measured probability of the correct

answer produced by Qiskit (other incorrect answers had higher prob-

ability). TriQ-1QOptCN obtains up to 28x improvement (geomean

3.0X) over Qiskit.

Figure 11c and 11d show how TriQ-1QOptCN can improve in

success rate on Rigetti. For most benchmarks we see significant im-

provements. We obtain up to 2.3x improvement over the Quil com-

piler (geomean 1.45x). Quil uses a simple initial qubit mapping, with

insufficient communication optimization and no noise-awareness.

Finally, Figure 11e and 11f show the success rate improvements

of TriQ-1QOptCN for UMDTI. This machine has a fully-connected

topology and low error rates. For the applications that fit into its 5

qubits, success rates are high across the board; therefore, we created

more challenging 3-qubit benchmarks with longer gate sequences.

Namely, we used iterations of Toffoli or Fredkin gate sequences to

8

534

optimizations and observations inform Section 7’s summary of the

work’s hardware and architectural implications.

At the other end of the stack, QC programming languages and

compilers have seen ongoing attention. In addition to Scaffold, other

examples are Quipper [19, 20], and LIQUi|⟩ [67]. IBM Qiskit is a

Python-based framework to program and compile code for the IBM

systems, generating OpenQASM [10]. Likewise PyQuil [55, 56] is

a Python-based framework for Rigetti systems, generating Quil [62].

ProjectQ [54, 64] is another Python-based framework to describe

quantum circuits and compile them for different machines. Qiskit

and Quil consider communication optimization while ProjectQ does

not currently support non-grid topology [53]. Through its top-to-

bottom empirical results, our work shows the importance of both

device-specific and application-specific optimizations through the

toolflow. We demonstrate how to achieve this with a core set of

passes that apply across diverse platforms, by taking device charac-

teristics as input.

[22, 61, 66, 70, 71] develop methods for optimizing communi-

cation on current or small systems, but do not consider noise data.

Compared to the open source implementation of [71], TriQ reduces

2Q gate count by 1.2x (geomean), up to 2X. In [65], they propose

the use of noise-aware qubit mapping and movement policies on

the 20-qubit IBM system and report real executions on IBMQ5. For

BV4, [65] reports a success rate of 0.23 on the 5-qubit IBM system.

Since the machine state influences success rate, in order to make a

fair comparison, we evaluated TriQ on 6 days having different error

conditions. We obtained 2X better success rate ranging from 0.43 to

0.51 (average 0.47) indicating that our optimizations are effective.

[46] developed a noise-aware compiler for the Scaffold language,

targeted for systems with grid topologies and demonstrated the ben-

efits of noise-adaptive compilation on IBMQ16. However, none of

these provided multi-platform optimizations. Ours is the first work

to build a full-stack toolflow in support of cross-platform empirical

experiments comparing multiple QC prototypes.

9 CONCLUSIONS

After decades of gradual progress, NISQ QC prototypes are now

available for experiments. Several machines exist in the 5-50 qubit

range, representing widely-divergent design points regarding qubit

technologies, topologies, and error rates. This diversity offers oppor-

tunities for cross-platform design studies that elucidate how device

technologies influence other hardware design choices, and how com-

piler and software choices can offer optimizations that mitigate

challenging hardware characteristics. To study key system design

questions, our work built TriQ, a top-to-bottom toolflow which

compiles high-level language programs for multiple target systems.

Using real-systems measurements on seven devices, our experiments

with TriQ show several examples of how leveraging hardware details

in the compiler can provide a significant boost in program success

rates. Our empirical cross-platform and cross-technology study of-

fers forward-looking insights for compiler and architecture design

for NISQ systems.

ACKNOWLEDGMENTS

This work is funded in part by EPiQC, an NSF Expedition in Com-

puting, under grants CCF-1730082. We thank Christopher Monroe,

Kevin Akiva Landsman and Daiwei Zhu from University of Mary-

land for access to the ion trap system. We thank Ryan Karle, Marcus

da Silva, Amy Brown, Tushar Mittal and Nima Alidoust from Rigetti.

We thank Ken Brown and Fred Chong for their insightful comments

and suggestions.

REFERENCES
[1] Ali Javadi Abhari, Arvin Faruque, Mohammad Javad Dousti, Lukas Svec, Oana

Catu, Amlan Chakrabati, Chen-Fu Chiang, Seth Vanderwilt, John Black, Fred
Chong, Margaret Martonosi, Martin Suchara, Ken Brown, Massoud Pedram, and
Todd Brun. 2012. Scaffold: Quantum Programming Language. Report TR-934-12.
Princeton University.

[2] Matthew Amy, Dmitri Maslov, Michele Mosca, and Martin Roetteler. 2013. A
Meet-in-the-Middle Algorithm for Fast Synthesis of Depth-Optimal Quantum
Circuits. Trans. Comp.-Aided Des. Integ. Cir. Sys. 32, 6 (June 2013), 818–830.
https://doi.org/10.1109/TCAD.2013.2244643

[3] Ethan Bernstein and Umesh Vazirani. 1993. Quantum Complexity Theory. In
Proceedings of the Twenty-fifth Annual ACM Symposium on Theory of Computing

(STOC ’93). ACM, 11–20. https://doi.org/10.1145/167088.167097
[4] Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan Wiebe,

and Seth Lloyd. 2017. Quantum machine learning. Nature 549 (13 Sep 2017).
http://dx.doi.org/10.1038/nature23474

[5] Nikolaj Bjørner, Anh-Dung Phan, and Lars Fleckenstein. 2015. νZ - An Opti-
mizing SMT Solver. In Tools and Algorithms for the Construction and Analysis

of Systems, Christel Baier and Cesare Tinelli (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 194–199.

[6] S. A. Caldwell, N. Didier, C. A. Ryan, E. A. Sete, A. Hudson, P. Karalekas, R.
Manenti, M. P. da Silva, R. Sinclair, E. Acala, N. Alidoust, J. Angeles, A. Bestwick,
M. Block, B. Bloom, A. Bradley, C. Bui, L. Capelluto, R. Chilcott, J. Cordova,
G. Crossman, M. Curtis, S. Deshpande, T. El Bouayadi, D. Girshovich, S. Hong,
K. Kuang, M. Lenihan, T. Manning, A. Marchenkov, J. Marshall, R. Maydra, Y.
Mohan, W. O’Brien, C. Osborn, J. Otterbach, A. Papageorge, J.-P. Paquette, M.
Pelstring, A. Polloreno, G. Prawiroatmodjo, V. Rawat, M. Reagor, R. Renzas, N.
Rubin, D. Russell, M. Rust, D. Scarabelli, M. Scheer, M. Selvanayagam, R. Smith,
A. Staley, M. Suska, N. Tezak, D. C. Thompson, T.-W. To, M. Vahidpour, N.
Vodrahalli, T. Whyland, K. Yadav, W. Zeng, and C. Rigetti. 2018. Parametrically
Activated Entangling Gates Using Transmon Qubits. Phys. Rev. Applied 10 (Sep
2018), 034050. Issue 3. https://doi.org/10.1103/PhysRevApplied.10.034050

[7] Andrew M. Childs and Wim van Dam. 2007. Quantum Algorithm for a
Generalized Hidden Shift Problem. In Proceedings of the Eighteenth Annual

ACM-SIAM Symposium on Discrete Algorithms (SODA ’07). Society for In-
dustrial and Applied Mathematics, Philadelphia, PA, USA, 1225–1232. http:
//dl.acm.org/citation.cfm?id=1283383.1283515

[8] J. I. Cirac and P. Zoller. 1995. Quantum Computations with Cold Trapped Ions.
Phys. Rev. Lett. 74 (May 1995), 4091–4094. Issue 20. https://doi.org/10.1103/
PhysRevLett.74.4091

[9] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
2009. Introduction to Algorithms, Third Edition (3rd ed.). The MIT Press.

[10] Andrew W. Cross, Lev S. Bishop, John A. Smolin, and Jay M. Gambetta. 2017.
Open Quantum Assembly Language. arXiv:1707.03429

[11] Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In
Tools and Algorithms for the Construction and Analysis of Systems, C. R. Ramakr-
ishnan and Jakob Rehof (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
337–340.

[12] S. Debnath, N. M. Linke, C. Figgatt, K. A. Landsman, K. Wright, and C. Monroe.
2016. Demonstration of a small programmable quantum computer with atomic
qubits. Nature 536 (03 Aug 2016). http://dx.doi.org/10.1038/nature18648

[13] David P. DiVincenzo. 2000. The Physical Implementation of Quan-
tum Computation. Fortschritte der Physik 48, 9-11 (2000), 771–
783. https://doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>
3.0.CO;2-E arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/1521-3978

[14] X. Fu, L. Riesebos, M. A. Rol, J. van Straten, J. van Someren, N. Khammassi,
I. Ashraf, R. F. L. Vermeulen, V. Newsum, K. K. L. Loh, J. C. de Sterke,
W. J. Vlothuizen, R. N. Schouten, C. G. Almudever, L. DiCarlo, and K. Ber-
tels. 2018. eQASM: An Executable Quantum Instruction Set Architecture.
arXiv:arXiv:1808.02449

[15] X. Fu, M. A. Rol, C. C. Bultink, J. van Someren, N. Khammassi, I. Ashraf, R. F. L.
Vermeulen, J. C. de Sterke, W. J. Vlothuizen, R. N. Schouten, C. G. Almudever, L.
DiCarlo, and K. Bertels. 2017. An Experimental Microarchitecture for a Super-
conducting Quantum Processor. In Proceedings of the 50th Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO-50 ’17). ACM, 813–825.
https://doi.org/10.1145/3123939.3123952

[16] X. Fu, M. A. Rol, C. C. Bultink, J. van Someren, N. Khammassi, I. Ashraf, R. F. L.
Vermeulen, J. C. de Sterke, W. J. Vlothuizen, R. N. Schouten, C. G. Almudever,
L. DiCarlo, and K. Bertels. 2018. A Microarchitecture for a Superconducting

12

538

Quantum Processor. IEEE Micro 38, 3 (May 2018), 40–47. https://doi.org/10.
1109/MM.2018.032271060

[17] Google. 2018. A Preview of Bristlecone, Google’s New Quantum Processor. https:
//ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html. Ac-
cessed: 2018-08-05.

[18] Google. 2018. Cirq. https://github.com/quantumlib/Cirq. Accessed: 2018-11-29.
[19] Alexander S. Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter Selinger, and

Benoît Valiron. 2013. Quipper: A Scalable Quantum Programming Language. In
Proceedings of the 34th ACM SIGPLAN Conference on Programming Language

Design and Implementation (PLDI ’13). ACM, 333–342. https://doi.org/10.1145/
2491956.2462177

[20] Alexander S. Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter Selinger, and
Benoît Valiron. 2013. Quipper: A Scalable Quantum Programming Language.
SIGPLAN Not. 48, 6 (June 2013), 333–342. https://doi.org/10.1145/2499370.
2462177

[21] Lov K. Grover. 1996. A Fast Quantum Mechanical Algorithm for Database
Search. In Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of

Computing (STOC ’96). ACM, 212–219. https://doi.org/10.1145/237814.237866
[22] Gian Giacomo Guerreschi and Jongsoo Park. 2017. Two-step approach to sched-

uling quantum circuits. arXiv:1708.00023
[23] T. P. Harty, D. T. C. Allcock, C. J. Ballance, L. Guidoni, H. A. Janacek, N. M.

Linke, D. N. Stacey, and D. M. Lucas. 2014. High-Fidelity Preparation, Gates,
Memory, and Readout of a Trapped-Ion Quantum Bit. Phys. Rev. Lett. 113 (Nov
2014), 220501. Issue 22. https://doi.org/10.1103/PhysRevLett.113.220501

[24] Charles D. Hill, Eldad Peretz, Samuel J. Hile, Matthew G. House, Mar-
tin Fuechsle, Sven Rogge, Michelle Y. Simmons, and Lloyd C. L. Hol-
lenberg. 2015. A surface code quantum computer in silicon. Sci-

ence Advances 1, 9 (2015). https://doi.org/10.1126/sciadv.1500707
arXiv:http://advances.sciencemag.org/content/1/9/e1500707.full.pdf

[25] IBM. 2018. IBM Announces Advances to IBM Quantum Systems and Ecosystem.
https://www-03.ibm.com/press/us/en/pressrelease/53374.wss. Accessed: 2018-
08-05.

[26] IBM. 2018. IBM Qiskit. https://qiskit.org/. Accessed: 2018-08-05.
[27] IBM. 2018. IBM Quantum Devices. https://quantumexperience.ng.bluemix.net/

qx/devices. Accessed: 2018-05-16.
[28] IBM. 2018. IBM Quantum Experience. https://github.com/Qiskit/qiskit-api-py.

Accessed: 2018-11-16.
[29] IBM. 2018. IBMQ Backend Information. https://github.com/Qiskit/ibmq-device-

information. Accessed: 2018-11-01.
[30] Intel. 2018. CES 2018: Intel’s 49-Qubit Chip Shoots for Quantum

Supremacy. https://spectrum.ieee.org/tech-talk/computing/hardware/intels-
49qubit-chip-aims-for-quantum-supremacy. Accessed: 2018-08-05.

[31] Ali JavadiAbhari, Shruti Patil, Daniel Kudrow, Jeff Heckey, Alexey Lvov, Fred-
eric T. Chong, and Margaret Martonosi. 2014. ScaffCC: A Framework for Compi-
lation and Analysis of Quantum Computing Programs. In Proceedings of the 11th

ACM Conference on Computing Frontiers (CF ’14). ACM, Article 1, 10 pages.
https://doi.org/10.1145/2597917.2597939

[32] Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, Maika Takita, Markus
Brink, Jerry M. Chow, and Jay M. Gambetta. 2017. Hardware-efficient variational
quantum eigensolver for small molecules and quantum magnets. Nature 549 (13
Sep 2017). http://dx.doi.org/10.1038/nature23879

[33] Torsten Karzig, Christina Knapp, Roman M. Lutchyn, Parsa Bonderson,
Matthew B. Hastings, Chetan Nayak, Jason Alicea, Karsten Flensberg, Stephan
Plugge, Yuval Oreg, Charles M. Marcus, and Michael H. Freedman. 2017. Scalable
designs for quasiparticle-poisoning-protected topological quantum computation
with Majorana zero modes. Phys. Rev. B 95 (Jun 2017), 235305. Issue 23.
https://doi.org/10.1103/PhysRevB.95.235305

[34] A.Yu. Kitaev. 2003. Fault-tolerant quantum computation by anyons. Annals of

Physics 303, 1 (2003), 2 – 30. https://doi.org/10.1016/S0003-4916(02)00018-0
[35] P. V. Klimov, J. Kelly, Z. Chen, M. Neeley, A. Megrant, B. Burkett, R. Barends,

K. Arya, B. Chiaro, Yu Chen, A. Dunsworth, A. Fowler, B. Foxen, C. Gidney, M.
Giustina, R. Graff, T. Huang, E. Jeffrey, Erik Lucero, J. Y. Mutus, O. Naaman,
C. Neill, C. Quintana, P. Roushan, Daniel Sank, A. Vainsencher, J. Wenner, T. C.
White, S. Boixo, R. Babbush, V. N. Smelyanskiy, H. Neven, and John M. Martinis.
2018. Fluctuations of Energy-Relaxation Times in Superconducting Qubits. Phys.

Rev. Lett. 121 (Aug 2018), 090502. Issue 9. https://doi.org/10.1103/PhysRevLett.
121.090502

[36] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In Proceedings of the International

Symposium on Code Generation and Optimization: Feedback-directed and Run-

time Optimization (CGO ’04). IEEE Computer Society, Washington, DC, USA,
75–. http://dl.acm.org/citation.cfm?id=977395.977673

[37] Bjoern Lekitsch, Sebastian Weidt, Austin G. Fowler, Klaus Mølmer,
Simon J. Devitt, Christof Wunderlich, and Winfried K. Hensinger.
2017. Blueprint for a microwave trapped ion quantum computer. Sci-

ence Advances 3, 2 (2017). https://doi.org/10.1126/sciadv.1601540
arXiv:http://advances.sciencemag.org/content/3/2/e1601540.full.pdf

[38] Norbert M. Linke, Dmitri Maslov, Martin Roetteler, Shantanu Debnath, Caroline
Figgatt, Kevin A. Landsman, Kenneth Wright, and Christopher Monroe. 2017.
Experimental comparison of two quantum computing architectures. Proceedings of

the National Academy of Sciences 114, 13 (2017), 3305–3310. https://doi.org/10.
1073/pnas.1618020114 arXiv:http://www.pnas.org/content/114/13/3305.full.pdf

[39] Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. 2013. Quantum al-
gorithms for supervised and unsupervised machine learning. arXiv preprint
arXiv:1307.0411.

[40] J. Majer, J. M. Chow, J. M. Gambetta, Jens Koch, B. R. Johnson, J. A. Schreier, L.
Frunzio, D. I. Schuster, A. A. Houck, A. Wallraff, A. Blais, M. H. Devoret, S. M.
Girvin, and R. J. Schoelkopf. 2007. Coupling superconducting qubits via a cavity
bus. Nature 449 (27 Sep 2007). http://dx.doi.org/10.1038/nature06184

[41] Igor L. Markov, Aneeqa Fatima, Sergei V. Isakov, and Sergio Boixo. 2018. Quan-
tum Supremacy Is Both Closer and Farther than It Appears. arXiv:1807.10749

[42] Margaret Martonosi and Martin Roetteler. 2019. Next Steps in Quantum Comput-
ing: Computer Science’s Role. arXiv:arXiv:1903.10541 arXiv:1903.10541.

[43] David C. McKay, Thomas Alexander, Luciano Bello, Michael J. Biercuk, Lev
Bishop, Jiayin Chen, Jerry M. Chow, Antonio D. Córcoles, Daniel Egger, Stefan
Filipp, Juan Gomez, Michael Hush, Ali Javadi-Abhari, Diego Moreda, Paul Nation,
Brent Paulovicks, Erick Winston, Christopher J. Wood, James Wootton, and Jay M.
Gambetta. 2018. Qiskit Backend Specifications for OpenQASM and OpenPulse
Experiments. arXiv:1809.03452

[44] N. David Mermin. 2007. Quantum Computer Science: An Introduction. Cambridge
University Press.

[45] Thomas Monz, Philipp Schindler, Julio T. Barreiro, Michael Chwalla, Daniel Nigg,
William A. Coish, Maximilian Harlander, Wolfgang Hänsel, Markus Hennrich,
and Rainer Blatt. 2011. 14-Qubit Entanglement: Creation and Coherence. Phys.

Rev. Lett. 106 (Mar 2011), 130506. Issue 13. https://doi.org/10.1103/PhysRevLett.
106.130506

[46] Prakash Murali, Jonathan Baker, Ali Javadi Abhari, Fred Chong, and Margaret
Martonosi. 2019. Noise-Adaptive Compiler Mappings for Noisy Intermediate-
Scale Quantum Computers. In International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS ’19).
[47] NASEM. 2019. Quantum Computing: Progress and Prospects. https://doi.org/10.

17226/25196
[48] Michael A. Nielsen and Isaac L. Chuang. 2011. Quantum Computation and

Quantum Information: 10th Anniversary Edition (10th ed.). Cambridge University
Press.

[49] Tony Nowatzki, Michael Sartin-Tarm, Lorenzo De Carli, Karthikeyan Sankar-
alingam, Cristian Estan, and Behnam Robatmili. 2013. A General Constraint-
centric Scheduling Framework for Spatial Architectures. In Proceedings of the

34th ACM SIGPLAN Conference on Programming Language Design and Imple-

mentation (PLDI ’13). ACM, 495–506. https://doi.org/10.1145/2491956.2462163
[50] Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou,

Peter J. Love, Alán Aspuru-Guzik, and Jeremy L. O’Brien. 2014. A variational
eigenvalue solver on a photonic quantum processor. Nature Communications 5
(23 Jul 2014). http://dx.doi.org/10.1038/ncomms5213 Article.

[51] Jarryd J. Pla, Kuan Y. Tan, Juan P. Dehollain, Wee H. Lim, John J. L. Morton,
David N. Jamieson, Andrew S. Dzurak, and Andrea Morello. 2012. A single-atom
electron spin qubit in silicon. Nature 489 (19 Sep 2012). https://doi.org/10.1038/
nature11449

[52] John Preskill. 2018. Quantum Computing in the NISQ era and beyond.
arXiv:1801.00862

[53] Project Q. 2018. Bug Report: StatePreparation causes "Circuit cannot be mapped
without using Swaps" on IBM. https://github.com/ProjectQ-Framework/ProjectQ/
issues/279. Accessed: 2018-10-27.

[54] Project Q. 2018. Project Q. https://projectq.ch/. Accessed: 2018-05-16.
[55] Rigetti. 2018. PyQuil. https://github.com/rigetticomputing/pyquil. Accessed:

2018-08-01.
[56] Rigetti. 2018. Rigetti Forest. http://forest.rigetti.com. Accessed: 2018-08-01.
[57] Chad Rigetti, Jay M. Gambetta, Stefano Poletto, B. L. T. Plourde, Jerry M. Chow,

A. D. Córcoles, John A. Smolin, Seth T. Merkel, J. R. Rozen, George A. Keefe,
Mary B. Rothwell, Mark B. Ketchen, and M. Steffen. 2012. Superconducting
qubit in a waveguide cavity with a coherence time approaching 0.1 ms. Phys. Rev.

B 86 (Sep 2012), 100506. Issue 10. https://doi.org/10.1103/PhysRevB.86.100506
[58] ScaffCC. 2018. ScaffCC Compiler. https://github.com/epiqc/ScaffCC. Accessed:

2018-05-16.
[59] Sarah Sheldon, Easwar Magesan, Jerry M. Chow, and Jay M. Gambetta. 2016.

Procedure for systematically tuning up cross-talk in the cross-resonance gate.
Phys. Rev. A 93 (Jun 2016), 060302. Issue 6. https://doi.org/10.1103/PhysRevA.
93.060302

[60] P. Shor. 1999. Polynomial-Time Algorithms for Prime Factoriza-
tion and Discrete Logarithms on a Quantum Computer. SIAM Rev.

41, 2 (1999), 303–332. https://doi.org/10.1137/S0036144598347011
arXiv:https://doi.org/10.1137/S0036144598347011

[61] Marcos Yukio Siraichi, Vinícius Fernandes dos Santos, Sylvain Collange, and
Fernando Magno Quintao Pereira. 2018. Qubit Allocation. In Proceedings of

the 2018 International Symposium on Code Generation and Optimization (CGO

13

539

2018). ACM, 113–125. https://doi.org/10.1145/3168822
[62] Robert S. Smith, Michael J. Curtis, and William J. Zeng. 2016. A Practical

Quantum Instruction Set Architecture. arXiv:1608.03355
[63] Mathias Soeken, Thomas Haner, and Martin Roetteler. 2018. Programming

Quantum Computers Using Design Automation. arXiv:1803.01022
[64] Damian S. Steiger, Thomas Häner, and Matthias Troyer. 2018. ProjectQ: an open

source software framework for quantum computing. Quantum 2 (Jan. 2018), 49.
https://doi.org/10.22331/q-2018-01-31-49

[65] Swamit S. Tannu and Moinuddin K. Qureshi. 2018. A Case for Variability-Aware
Policies for NISQ-Era Quantum Computers. arXiv:1805.10224

[66] Davide Venturelli, Minh Do, Eleanor Rieffel, and Jeremy Frank. 2018. Compil-
ing quantum circuits to realistic hardware architectures using temporal planners.
Quantum Science and Technology 3, 2 (2018), 025004. http://stacks.iop.org/2058-
9565/3/i=2/a=025004

[67] Dave Wecker and Krysta M. Svore. 2014. LIQUi|>: A Software Design Architec-
ture and Domain-Specific Language for Quantum Computing. arXiv:1402.4467

[68] Wikipedia. 2018. Conversion between Quaternions and Euler Angles. https:
//en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles. Ac-
cessed: 2018-11-27.

[69] M. V. Wilkes. 1989. The Early British Computer Conferences. MIT Press,
Cambridge, MA, USA, Chapter The Best Way to Design an Automatic Calculating
Machine, 182–184. http://dl.acm.org/citation.cfm?id=94938.94976

[70] Xin Zhang, Hong Xiang, Tao Xiang, Li Fu, and Jun Sang. 2018. An efficient
quantum circuits optimizing scheme compared with QISKit. arXiv:1807.01703

[71] Alwin Zulehner, Alexandru Paler, and Robert Wille. 2017. An Efficient
Methodology for Mapping Quantum Circuits to the IBM QX Architectures.
arXiv:1712.04722

14

540

	Abstract
	1 Introduction
	2 QC Background
	2.1 Principles of Quantum Computing
	2.2 Quantum Gates
	2.3 NISQ Systems

	3 Device, Architecture Tradeoffs
	3.1 Native Gate Choices
	3.2 Communication Characteristics
	3.3 Noise and Coherence Characteristics
	3.4 Our Work

	4 Design and Overview of TriQ
	4.1 Overview
	4.2 Reliability Matrix Computation
	4.3 Qubit Mapping
	4.4 Gate and Communication Scheduling
	4.5 Gate Implementation, Optimization and Code Generation
	4.6 Executable Generation

	5 Experimental Setup
	6 Results
	6.1 Gate Specificity and Optimizations
	6.2 Importance of Qubit Connectivity
	6.3 Importance of Noise-Adaptivity
	6.4 Putting it all together
	6.5 Scalability of our Toolflow

	7 Architecture Implications
	8 Related Work
	9 Conclusions
	Acknowledgments
	References

